EE 330 Lecture 40

Digital Circuits

- The Reference Inverter
- Propagation Delay - basic characterization
- Device Sizing (Inverter and multiple-input gates)

Fall 2023 Exam Schedule

Exam 1 Friday Sept 22 Exam 2 Friday Oct 20 Exam 3 Friday Nov. 17 Final Monday Dec 11 12:00-2:00 p.m.

Review from last lecture

Other MOS Logic Families

These are termed "ratio logic" gates

Static Power Dissipation in Static CMOS Family

$$
\begin{aligned}
& \text { When } \mathrm{V}_{\mathrm{OUT}} \text { is Low, } \mathrm{I}_{\mathrm{D} 1}=0 \\
& \text { When } \mathrm{V}_{\mathrm{OUT}} \text { is High, } \mathrm{I}_{\mathrm{D} 2}=0 \\
& \text { Thus, } \mathrm{P}_{\text {STATIC }}=0
\end{aligned}
$$

This is a key property of the static CMOS Logic
Family and is the major reason Static CMOS Logic is
 so dominant

It can be shown that this zero static power dissipation property can be preserved if the PUN is comprised of p-channel devices, the PDN is comprised of n-channel devices and they are never both driven into the conducting states at the same time

Propagation Delay in Static CMOS Family

Defn: The Propagation Delay of a gate is defined to be the sum of $t_{H L}$ and $t_{L H}$, that is, $t_{\text {PROP }}=t_{H L}+t_{L H}$

$$
t_{\text {PROP }}=t_{H L}+t_{L H} \cong C_{L}\left(R_{P U}+R_{P D}\right)
$$

Propagation delay represents a fundamental limit on the speed a gate can be clocked

For basic two-inverter cascade in static CMOS logic

$$
\mathrm{t}_{\mathrm{PROP}}=\mathrm{t}_{\mathrm{HL}}+\mathrm{t} \mathrm{LH} \cong 20 p \mathrm{sec}
$$

Propagation Delay in Static CMOS Family

Propagation through k levels of logic

$$
\begin{aligned}
& \mathrm{t}_{\mathrm{HL}} \cong \mathrm{t}_{\mathrm{HLk}}+\mathrm{t}_{\mathrm{LH}(\mathrm{k}-1)}+\mathrm{t}_{\mathrm{HL}(\mathrm{k}-2)}+\cdots+\mathrm{t}_{\mathrm{XY} 1} \\
& \mathrm{t}_{\mathrm{LH}} \cong \mathrm{t}_{\mathrm{LHk}}+\mathrm{t}_{\mathrm{HL}(\mathrm{k}-1)^{+}} \mathrm{t}_{\mathrm{LH}(\mathrm{k}-2)}+\cdots+\mathrm{t}_{\mathrm{YX}}{ }^{2}
\end{aligned}
$$

where $\mathrm{x}=\mathrm{H}$ and $\mathrm{Y}=\mathrm{L}$ if k odd and $\mathrm{X}=\mathrm{L}$ and $\mathrm{Y}=\mathrm{h}$ if k even

$$
\mathrm{t}_{\mathrm{PROP}}=\sum_{i=1}^{k} \mathrm{t}_{\mathrm{PROPk}}
$$

Will return to propagation delay after we discuss device sizing

Digital Circuit Design

Hierarchical Design
Basic Logic Gates
Properties of Logic Families
Characterization of CMOS Inverter
Static CMOS Logic Gates
Ratio Logic
Propagation Delay
Simple analytical models

- FI/OD
- Logical Effort
- Elmore Delay

Sizing of Gates

- The Reference Inverter
done
partial
- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators

Observation:

$$
\left|\mathrm{V}_{\mathrm{Tp}}\right| \approx \mathrm{V}_{\mathrm{Tn}} \approx \mathrm{~V}_{\mathrm{DD}} / 5 \text { in many processes }
$$

Question:

Why is $\left|\mathrm{V}_{\mathrm{Tp}}\right| \approx \mathrm{V}_{\mathrm{Tn}} \approx \mathrm{V}_{\mathrm{DD}} / 5$ in many processes ?

Device Sizing

Strategies?

Degrees of Freedom?

Will consider the inverter first

Device Sizing

Degrees of Freedom?

Strategies?

Device Sizing

- Since not ratio logic, V_{H} and V_{L} are independent of device sizes for this inverter

- With $L_{1}=L_{2}=L_{\text {min }}$, there are 2 degrees of freedom (W_{1} and W_{2})

Sizing Strategies

- Minimum Size
- Fixed $\mathrm{V}_{\text {TRIP }}$
- Equal rise-fall times (equal worst-case rise and fall times)
- Minimum power dissipation
- Minimum time required to drive a given load
- Minimum input capacitance

Device Sizing

Assume $\mathrm{V}_{\mathrm{Tn}}=0.2 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{Tp}}=-0.2 \mathrm{~V}_{\mathrm{DD}}, \mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3, \mathrm{~L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{\text {min }}$
Sizing Strategy: minimum sized

$$
\begin{gathered}
\mathrm{W}_{\mathrm{n}}=?, \quad \mathrm{~W}_{\mathrm{p}}=?, \quad \mathrm{~V}_{\text {trip }}=?, \mathrm{t}_{\mathrm{HL}}=?, \mathrm{t}_{\mathrm{LH}}=? \\
\mathrm{~W}_{1}=\mathrm{W}_{2}=\mathbf{W}_{\mathrm{MIN}}
\end{gathered}
$$

Observe that

$$
\frac{R_{P U}}{R_{P D}}=\frac{\frac{L_{\text {min }}}{\mu_{\mathrm{p}} C_{o x} W_{\text {min }}\left(V_{D D}+V_{T p}\right)}}{\frac{L_{\text {min }}}{\mu_{\mathrm{n}} C_{O X} W_{\text {min }}\left(V_{D D}-V_{T n}\right)}}=\frac{\mu_{\mathrm{n}}}{\mu_{\mathrm{p}}}=3
$$

$$
\begin{aligned}
& \mathbf{R}_{\mathrm{PD}}=\frac{\mathbf{L}_{1}}{\mu_{\mathrm{n}} \mathbf{C}_{\mathrm{ox}} \mathbf{W}_{1}\left(\mathbf{V}_{\mathrm{DD}}-\mathbf{V}_{\mathrm{Tn}}\right)} \\
& \mathbf{R}_{\mathrm{PU}}=\frac{\mathbf{L}_{2}}{\mu_{\mathrm{p}} \mathbf{C}_{\mathrm{ox}} \mathbf{W}_{\mathbf{2}}\left(\mathbf{V}_{\mathrm{DD}}+\mathbf{V}_{\mathrm{Tp}}\right)}
\end{aligned}
$$

$$
\mathbf{C}_{\mathbf{N N}}=\mathbf{C}_{\mathrm{ox}}\left(\mathbf{W}_{1} \mathbf{L}_{1}+\mathbf{W}_{2} \mathbf{L}_{2}\right)
$$

Device Sizing

Assume $\mathrm{V}_{\mathrm{Tn}}=0.2 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{Tp}}=-0.2 \mathrm{~V}_{\mathrm{DD}}, \mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3, \mathrm{~L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{\text {min }}$

 Sizing Strategy: minimum sized

$$
\mathrm{W}_{\mathrm{n}}=?, \mathrm{~W}_{\mathrm{p}}=?, \mathrm{~V}_{\mathrm{trip}}=?, \mathrm{t}_{\mathrm{HL}}=?, \mathrm{t}_{\mathrm{LH}}=?
$$

$$
W_{1}=W_{2}=W_{M I N}
$$

$$
R_{P U}=\left(\mu_{n} / \mu_{p}\right) R_{P D}=3 R_{P D}
$$

also provides minimum input capacitance

$$
\begin{aligned}
& t_{H L}=R_{P D} C_{L} \\
& t_{L H}=R_{P U} C_{L}=3 R_{P D} C_{L}
\end{aligned}
$$

$t_{L H}$ is longer than $t_{H L}$

$$
t_{P R O P}=4 R_{P D} C_{L}
$$

$$
\mathrm{V}_{\mathrm{TRIP}}=\frac{\left(0.2 \mathrm{~V}_{\mathrm{DD}}\right)+\left(\mathrm{V}_{\mathrm{DD}}-0.2 \mathrm{~V}_{\mathrm{DD}}\right) \sqrt{\frac{1}{3}}}{1+\sqrt{\frac{1}{3}}}=.42 \mathrm{~V}_{\mathrm{DD}}
$$

Device Sizing

Assume $\mathrm{V}_{\mathrm{Tn}}=0.2 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{Tp}}=-0.2 \mathrm{~V}_{\mathrm{DD}}, \mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3, \mathrm{~L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{\text {min }}$ Sizing strategy: Equal (worst case) rise and fall times

$$
\mathrm{W}_{\mathrm{n}}=?, \mathrm{~W}_{\mathrm{p}}=?, \mathrm{~V}_{\text {trip }}=?, \mathrm{t}_{\mathrm{HL}}=?, \mathrm{t}_{\mathrm{LH}}=?
$$

$\mathrm{R}_{\mathrm{PD}}=\frac{\mathrm{L}_{\text {min }}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \mathrm{W}_{1}\left(0.8 \mathrm{~V}_{\mathrm{DD}}\right)}$
$\mathrm{R}_{\mathrm{PU}}=\frac{\mathrm{L}_{\text {min }}}{3 \mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}} \mathrm{W}_{2}\left(0.8 \mathrm{~V}_{\mathrm{DD}}\right)}$

Device Sizing

Assume $\mathrm{V}_{\text {Tn }}=0.2 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{TP}}=-0.2 \mathrm{~V}_{\mathrm{DD}}, \mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3, \mathrm{~L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{\text {min }}$
Sizing strategy: Equal (worst case) rise and fall times

$$
\frac{t_{L H}}{t_{H L}}=1=\frac{R_{P U} C_{I N}}{R_{P D} C_{I N}} \Rightarrow R_{P U}=R_{P D}
$$

Thus

$$
\frac{L_{1}}{u_{n} C_{O X} W_{1}\left(V_{D D}-V_{T n}\right)}=\frac{L_{2}}{u_{D} C_{O X} W_{2}\left(V_{D D}+V_{T P}\right)}
$$

with $\mathrm{L}_{1}=\mathrm{L}_{2}$ and $\mathrm{V}_{\mathrm{Tp}}=-\mathrm{V}_{\mathrm{Tn}}$ we must have

$$
\frac{W_{2}}{W_{1}}=\frac{\mu_{n}}{\mu_{n}} \cong 3
$$

$$
\mathbf{R}_{\mathrm{PD}}=\frac{\mathbf{L}_{1}}{\mu_{\mathrm{n}} \mathbf{C o x}_{\mathrm{ox}} \mathbf{W}_{1}\left(\mathbf{V}_{\mathrm{DD}}-\mathbf{V}_{\mathrm{Tn}}\right)}
$$

What about the second degree of freedom?

$$
\mathbf{W}_{1}=\mathbf{W}_{\text {MIN }} \quad \text { (could be something else) }
$$

$$
\mathrm{R}_{\mathrm{PU}}=\frac{\mathrm{L}_{2}}{\mu_{\mathrm{P}} \mathbf{C}_{\mathrm{ox}} \mathbf{W}_{2}\left(\mathbf{V}_{\mathrm{DD}}+\mathbf{V}_{\mathrm{TP}}\right)}
$$

Thus $\mathrm{W}_{1}=\mathrm{W}_{\text {MIN }}$ and $\mathrm{W}_{2}=3 \mathrm{~W}_{\text {MIN }}$

$$
\mathbf{V}_{\text {TRIP }}=?
$$

Device Sizing

Assume $\mathrm{V}_{\mathrm{Tn}}=0.2 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{Tp}}=-0.2 \mathrm{~V}_{\mathrm{DD}}, \mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3, \mathrm{~L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{\text {min }}$

$$
\begin{aligned}
& \text { Sizing strategy: Equal (worst-case) rise and fall times } \\
& \mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\text {MIN }}, \mathrm{W}_{\mathrm{p}}=3 \mathrm{~W}_{\text {MIN }}, \mathrm{V}_{\text {trip }}=?, \mathrm{t}_{\mathrm{HL}}=?, \mathrm{t}_{\mathrm{LH}}=\text { ? } \\
& \mathrm{V}_{\text {TRIP }}=\text { ? } \\
& \mathrm{V}_{\text {TRPP }}=\frac{\left(\mathrm{V}_{\mathrm{Tn}}\right)+\left(\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\text {Tp }}\right) \sqrt{\frac{\mu_{\mathrm{p}}}{\mu_{\mathrm{n}}} \frac{\mathrm{~W}_{2} \mathrm{~L}_{1}}{\mathrm{~W}_{1}}}}{1+\sqrt{\frac{\mu_{\mathrm{p}}}{\mathrm{~L}_{2}} \frac{\mathrm{~W}_{2}}{\mathrm{~W}_{1}} \frac{L_{1}}{L_{2}}}}=\frac{0.2 \mathrm{~V}_{\mathrm{DD}}+0.8 \mathrm{~V}_{\mathrm{DD}}}{2}=\frac{\mathrm{V}_{\mathrm{DD}}}{2} \\
& t_{H L}=t_{L H}=R_{p d} C_{L}=\frac{L_{\text {min }}}{\mu_{n} C_{O X} W_{\text {min }}\left(0.8 V_{D D}\right)} C_{L} \\
& t_{\text {PROP }}=2 R_{p d} C_{L}
\end{aligned}
$$

For a fixed C_{L}, how does $t_{\text {prop }}$ compare for the minimum-sizing compared to equal rise/fall sizing?

Device Sizing

Assume $\mathrm{V}_{\mathrm{Tn}}=0.2 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{Tp}}=-0.2 \mathrm{~V}_{\mathrm{DD}}, \mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3, \mathrm{~L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{\text {min }}$

Sizing strategy: Fixed $\mathrm{V}_{\text {TRIP }}=\mathrm{V}_{\mathrm{DD}} / 2 \quad$ (Could have other $\mathrm{V}_{\text {TRIP }}$)

$$
\mathrm{W}_{\mathrm{n}}=?, \quad \mathrm{~W}_{\mathrm{p}}=?, \quad \mathrm{~V}_{\text {trip }}=?, \mathrm{t}_{\mathrm{HL}}=?, \mathrm{t}_{\mathrm{LH}}=?
$$

$$
V_{\text {Tepp }}=\frac{\left(V_{\text {To }}\right)+\left(V_{\text {oo }}+V_{\text {Vo }}\right) \sqrt{\frac{\mu_{\mathrm{o}}}{\mu_{\mathrm{n}}} \frac{W_{2}}{W_{1} L_{1}} L_{2}}}{1+\sqrt{\frac{\mu_{\mathrm{e}} W_{2} L_{1}}{\mu_{\mathrm{n}}} \frac{W_{1}}{L_{2}}}}
$$

Device Sizing

$$
\text { Assume } \mathrm{V}_{\mathrm{Tn}}=0.2 \mathrm{~V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{Tp}}=-0.2 \mathrm{~V}_{\mathrm{DD}}, \mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3, \mathrm{~L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{\min }
$$

$V_{\text {TRP }}=\frac{\left(V_{\text {To }}\right)+\left(V_{\text {oo }}+V_{\text {Tp }}\right) \sqrt{\frac{\mu_{\mathrm{o}}}{\mu_{n}} \frac{W_{2}}{W_{1}} \frac{L_{1}}{W_{1}}}}{1+\sqrt{\frac{\mu_{\mathrm{p}} W_{2} L_{1}}{\mu_{\mathrm{n}} W_{1} L_{2}}}}$

Sizing strategy: Fixed $\mathrm{V}_{\text {TRIP }}=\mathrm{V}_{\mathrm{DD}} / 2$

$$
\mathrm{W}_{\mathrm{n}}=?, \mathrm{~W}_{\mathrm{p}}=?, \quad \mathrm{~V}_{\text {trip }}=?, \mathrm{t}_{\mathrm{HL}}=?, \mathrm{t}_{\mathrm{LH}}=?
$$

Set
$\mathrm{V}_{\text {TRIP }}=\mathrm{V}_{\mathrm{DD}} / 2$

Solving, obtain

$$
\begin{gathered}
\frac{W_{2}}{W_{1}}=\frac{\mu_{n}}{\mu_{p}} \\
\mathbf{W}_{\mathrm{n}}=\mathbf{W}_{\text {MIN }}, \quad \mathbf{W}_{\mathrm{p}}=3 \mathbf{W}_{\mathrm{MIN}}
\end{gathered}
$$

- This is the same sizing as was obtained for equal worst-case rise and fall times so $t_{H L}=t_{L H}=R_{p d} C_{L}$
- This is no coincidence !!! Why?
- These properties guide the definition of the process parameters provided by the foundry

Assume $\mathrm{V}_{\mathrm{Tn}}=0.2 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{Tp}}=-0.2 \mathrm{~V}_{\mathrm{DD}}, \mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3, \mathrm{~L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{\text {min }}$
Sizing Strategies

- Minimum Size
- Fixed $\mathrm{V}_{\text {TRIP }} \quad\left(\mathrm{V}_{\text {TRIP }}=\mathrm{V}_{\mathrm{DD}} / 2\right)$
- Equal rise-fall times (equal worst-case rise and fall times)
- Minimum power dissipation
- Minimum time required to drive a given load
- Minimum input capacitance

Device Sizing

Assume $\mathrm{V}_{\mathrm{Tn}}=0.2 \mathrm{~V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{Tp}}=-0.2 \mathrm{~V}_{\mathrm{DD}}, \mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3, \mathrm{~L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{\text {min }}$

Sizing Strategy Summary

		Minimum Size	$\mathrm{V}_{\text {TRIP }}=\mathrm{V}_{\text {DD }} / 2$	Equal Rise/Fall
	Size	$\begin{aligned} & \mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\mathrm{p}}=\mathrm{W}_{\text {min }} \\ & \mathrm{L}_{\mathrm{p}}=\mathrm{L}_{\mathrm{n}}=\mathrm{L}_{\text {min }} \end{aligned}$	$\mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\text {min }}$ $\mathrm{W}_{\mathrm{p}=}=3 \mathrm{~W}_{\text {min }}$ $\mathrm{L}_{\mathrm{p}}=\mathrm{L}_{\mathrm{n}}=\mathrm{L}_{\text {min }}$	$\begin{aligned} & \mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\text {min }} \\ & \mathrm{W}_{\mathrm{p}}=\mathrm{W}_{\text {min }} \\ & \mathrm{L}_{\mathrm{p}}=\mathrm{L}_{\mathrm{n}}=\mathrm{L}_{\text {min }} \end{aligned}$
	$t_{\text {HL }}$	$\mathrm{R}_{\mathrm{pd}} \mathrm{C}_{\mathrm{L}}$	$\mathrm{R}_{\mathrm{pd}} \mathrm{C}_{\mathrm{L}}$	$\mathrm{R}_{\mathrm{pd}} \mathrm{C}_{\mathrm{L}}$
	t_{LH}	$3 R_{p d} C_{L}$	$\mathrm{R}_{\mathrm{pd}} \mathrm{C}_{\mathrm{L}}$	$\mathrm{R}_{\mathrm{pd}} \mathrm{C}_{\mathrm{L}}$
	$\mathrm{t}_{\text {PROP }}$	$4 \mathrm{R}_{\mathrm{pd}} \mathrm{C}_{\mathrm{L}}$	$2 R_{p d} C_{L}$	$2 R_{\text {pd }}$
	$\mathrm{V}_{\text {trip }}$	$\mathrm{V}_{\text {TRIP }}=0.42 \mathrm{~V}_{\mathrm{DD}}$	$\mathrm{V}_{\text {TRIP }}=0.5 \mathrm{~V}_{\text {DD }}$	$\mathrm{V}_{\text {TRIP }}=0.5$

- For a fixed load C_{L}, the minimum-sized structure has a higher $t_{\text {PROP }}$ but if the load is another inverter, C_{L} will also change so the speed improvements become less apparent - This will be investigated later

Question:

?

Why is $\left|\mathrm{V}_{\mathrm{Tp}}\right| \approx \mathrm{V}_{\mathrm{Tn}} \approx \mathrm{V}_{\mathrm{DD}} / 5$ in many processes ?

Digital Circuit Design

Hierarchical Design
Basic Logic Gates
Properties of Logic Families
Characterization of CMOS Inverter
Static CMOS Logic Gates
Ratio Logic
Propagation Delay
Simple analytical models

- FI/OD
- Logical Effort
- Elmore Delay

Sizing of Gates
The Reference Inverter
done
partial

- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators

Reference Inverter

$$
\mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\mathrm{MIN}}
$$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{p}}=\frac{\mu_{\mathrm{n}}}{\mu_{\mathrm{p}}} \mathrm{~W}_{\mathrm{n}} \\
& \mathrm{~L}_{\mathrm{n}}=\mathrm{L}_{\mathrm{p}}
\end{aligned}
$$

Assume:
$\mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3$
$L_{n}=L_{p}=L_{\text {MIN }}$
$\mathbf{W}_{\mathrm{n}}=\mathbf{W}_{\text {MIN }}$

$$
\mathrm{C}_{\text {REF }}=\mathrm{Cef}_{\text {dIREF }}=\mathrm{C}_{o X} \mathrm{~W}_{n} \mathrm{~L}_{n}+\mathrm{C}_{o X} \mathrm{~W}_{p} \mathrm{~L}_{p}
$$

$$
\mathrm{R}_{\text {PDREF }}=\frac{\mathrm{L}_{\text {MIN }}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIN }}\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{Tn}}\right)} \stackrel{\mathrm{V}_{\mathrm{Tn}}=.2 \mathrm{~V}_{\mathrm{DD}}}{=} \frac{\mathrm{L}_{\mathrm{MIN}}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\mathrm{MIN}}\left(0.8 \mathrm{~V}_{\mathrm{DD}}\right)}
$$

$$
R_{\text {PUREF }}=\frac{L_{M I N}}{\mu_{\mathrm{p}} C_{O X} 3 W_{M I N}\left(V_{D D}+V_{T \mathrm{P}}\right)} \stackrel{V_{T \mathrm{P}}=-.2 \mathrm{~V}_{\mathrm{DD}}}{=} R_{\text {PDREF }}
$$

$$
t_{\text {HLREF }}=t_{\text {LHREF }}=R_{\text {PDREF }} C_{L}
$$

The reference inverter

- Have sized the reference inverter with $L_{n}=L_{p}=L_{\text {MIN }}, W_{n}=W_{\text {MIN }}, W_{p} / W_{n}=\mu_{n} / \mu_{p}$
- In standard processes, provides $\mathrm{V}_{\mathrm{TRIP}} \approx \mathrm{V}_{\mathrm{DD}} / 2$ and $\mathrm{t}_{\mathrm{HL}} \approx \mathrm{t}_{\mathrm{LH}}$
- Any other sizing strategy could have been used for the reference inverter but this is most convenient

Reference Inverter

The reference inverter pair

$$
\begin{aligned}
& \mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3 \\
& \mathrm{~L}_{\mathrm{n}}=\mathrm{L}_{\mathrm{p}}=\mathrm{L}_{\mathrm{MIN}} \\
& \mathbf{W}_{\mathrm{n}}=\mathbf{W}_{\text {MIN }} \\
& \mathbf{W}_{\mathrm{p}}=3 \mathbf{W}_{\mathrm{n}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{L} 1}=\mathrm{C}_{\text {REF }}=4 \mathrm{C}_{\mathrm{Ox}} \mathrm{~W}_{\text {MIN }} \mathrm{L}_{\text {MIN }} \\
& \mathrm{t}_{\text {REF }}=\mathrm{e}_{\text {def }} \mathrm{t}_{\text {PROPREF }}=\mathrm{t}_{\text {HLREF }}+\mathrm{t}_{\text {LHREF }}=2 \mathrm{R}_{\text {PDREF }} \mathrm{C}_{\text {REF }}
\end{aligned}
$$

Reference Inverter

The reference inverter pair $\mu_{n} / \mu_{p}=3 \quad W_{n}=W_{\text {MIN }}$ $L_{n}=L_{p}=L_{\text {MIN }} \quad W_{p}=3 W_{n}$

Summary: parameters defined from reference inverter:

$$
\begin{gathered}
\mathrm{C}_{\text {REF }}=4 \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIN }} \mathrm{L}_{\text {MIN }} \\
\mathrm{R}_{\text {PDREF }}=\mathrm{R}_{\text {PUREF }}=\frac{\mathrm{L}_{\text {MIN }}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIN }}\left(\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\text {Tn }}\right)} \\
\mathrm{C}_{\text {REF }}=4 \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIN }} \mathrm{L}_{\text {MIN }} \\
\mathrm{t}_{\text {PROP }}=\mathrm{t}_{\text {REF }}=2 \mathrm{R}_{\text {PDREF }} \mathrm{C}_{\text {REF }}
\end{gathered}
$$

The Reference Inverter

$$
\begin{aligned}
& \mathrm{R}_{\text {PDREF }}=\mathrm{R}_{\text {PUREF }} \\
& \mathrm{R}_{\text {PDREF }}=\frac{\mathrm{L}_{\text {MIN }}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIN }}\left(\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {Tn }}\right)} \stackrel{V_{\text {m }}=2 V_{D D}}{=} \frac{\mathrm{L}_{\text {MIN }}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{ox}} \mathrm{~W}_{\text {MIN }}\left(0.8 \mathrm{~V}_{\mathrm{DD}}\right)} \\
& \mathbf{C}_{\text {REF }}=\mathbf{C}_{\text {IN }}=\mathbf{4 C _ { o x }} \mathbf{W}_{\text {MIN }} \mathrm{L}_{\text {MIN }} \\
& \mathbf{t}_{\text {HLREF }}=\mathbf{t}_{\text {LHREF }}=\mathbf{R}_{\text {PDREF }} \mathbf{C}_{\text {REF }} \\
& \mathrm{t}_{\text {PROP }}=\mathrm{t}_{\text {REF }} \\
& \mathbf{t}_{\text {REF }}=\mathbf{t}_{\text {HLREF }}+\mathbf{t}_{\text {LHREF }}=\mathbf{2} \mathbf{R}_{\text {PDREF }} \mathbf{C}_{\text {REF }}
\end{aligned}
$$

Digital Circuit Design

Hierarchical Design
Basic Logic Gates
Properties of Logic Families
Characterization of CMOS
Inverter
Static CMOS Logic Gates

- Ratio Logic

Propagation Delay

- Simple analytical models
- Elmore Delay

Sizing of Gates
The Reference Inverter

- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators

Recall: Device Sizing

$$
\text { Assume } \mathrm{V}_{T \mathrm{~T}}=0.2 \mathrm{~V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{TP}}=-0.2 \mathrm{~V}_{\mathrm{DD}}, \mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3, \mathrm{~L}_{1}=\mathrm{L}_{2}=\mathrm{L}_{\text {min }}
$$

Sizing Strategy Summary

- For a fixed load C_{L}, the minimum-sized structure has a higher $t_{\text {PROP }}$ but if the load is another inverter, C_{L} will also change so the speed improvements become less apparent This will be investigated later

Propagation Delay

How does the propagation delay compare for a minimum-sized strategy to that of an equal rise/fall sizing strategy?

What loading condition should be considered when addressing this question?

- Fixed load C_{L} ?
- Driving identical device?
- Does it make any difference?

Minimum Sized

$$
\mathrm{W}_{2}=\mathrm{W}_{1}=\mathrm{W}_{\text {MIN }}
$$

Reference Inverter (equal rise/fall)

$$
\begin{gathered}
\mathbf{W}_{2}=\left(\mu_{\mathrm{n}} / \mu_{\mathrm{p}}\right) \mathbf{W}_{1}, \mathbf{W}_{1}=\mathbf{W}_{\text {MIN }} \\
\mathrm{t}_{\text {PROP }}=\mathrm{t}_{\text {REF }}
\end{gathered}
$$

Device Sizing

The minimum-sized inverter pair

Assume $\mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3$
$\mathrm{L}_{\mathrm{n}}=\mathrm{L}_{\mathrm{p}}=\mathrm{L}_{\text {MIN }}, \mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\mathrm{p}}=\mathrm{W}_{\text {MIN }}$
Recall:

$$
\begin{aligned}
& \mathbf{C}_{\text {REF }}=4 \mathbf{C}_{o x} \mathbf{W}_{\text {MIN }} L_{\text {MIN }} \\
& R_{\text {PDREF }}=\frac{L_{\text {MI }}}{\mu_{\mathrm{n}} \mathrm{C}_{\text {ox }} \mathrm{W}_{\text {MIN }}\left(\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {Tm }}\right)} \\
& \mathbf{t}_{\text {PROP_REF }}=\mathbf{2 R}_{\text {PDREF }} \mathrm{C}_{\text {REF }}
\end{aligned}
$$

For minimum-sized inverter pair:
$\mathrm{C}_{\mathrm{L} 1}=2 \mathrm{C}_{\mathrm{ox}} \mathrm{W}_{\text {MIN }} \mathrm{L}_{\text {MIN }}=0.5 \mathrm{C}_{\text {REF }}$
$R_{P D}=R_{\text {PDREF }} \quad R_{P U}=3 R_{P D}=3 R_{\text {PDRF }}$
$t_{\text {PROP }}=t_{\text {HL }}+t_{\text {LH }}=C_{L 1}\left(R_{\text {PDREF }}+3 R_{\text {PDRF }}\right)=.5 C_{\text {REF }} * 4 R_{\text {PDREF }}=2 R_{\text {PDREF }} C_{\text {REF }}$
$t_{\text {PROP }}=t_{\text {REF }}$

Propagation Delay

How does the propagation delay compare for a minimum-sized strategy to that of an equal rise/fall sizing strategy?

Minimum Sized

$$
\begin{aligned}
\mathbf{W}_{2} & =\mathbf{W}_{1} \\
\mathrm{t}_{\text {PROP }} & =\mathrm{t}_{\text {MIN }}
\end{aligned}
$$

Reference Inverter (equal rise/fall)

$$
\begin{gathered}
\mathbf{W}_{2}=\left(\mu_{\mathrm{n}} / \mu_{\mathrm{p}}\right) \mathrm{W}_{1}, \mathrm{~W}_{1}=\mathrm{W}_{\text {MIN }} \\
\mathrm{t}_{\text {PROP }}=\mathrm{t}_{\text {REF }}
\end{gathered}
$$

Even though the $\mathrm{t}_{\text {LH }}$ rise time has been reduced with the equal rise/fall sizing strategy, this was done at the expense of an increase in the total load capacitance that resulted in no net change in propagation delay!

Digital Circuit Design

Hierarchical Design
Basic Logic Gates
Properties of Logic Families
Characterization of CMOS Inverter

Static CMOS Logic Gates
Ratio Logic
Propagation Delay
Simple analytical models

- FI/OD
- Logical Effort
- Elmore Delay
\longrightarrow Sizing of Gates
The Reference Inverter
done
partial
- Propagation Delay with Multiple Levels of Logic
- Optimal driving of Large Capacitive Loads
- Power Dissipation in Logic Circuits
- Other Logic Styles
- Array Logic
- Ring Oscillators

Device Sizing

Will consider now the multiple-input gates
Will consider both minimum sizing and equal worst-case rise/fall
Will assume C_{L} (not shown) $=C_{\text {ReF }}$
Will initially size so gate drive capability is same as that of ref inverter Note: worst-case has been added since fall time in NOR gates or rise time in NAND gates depends upon how many transistors are conducting

Fan In

- The Fan In (FI) to an input of a gate device, circuit or interconnect that is capacitive is the input capacitance
- Often this is normalized to some capacitance (typically $\mathrm{C}_{\text {REF }}$ of ref inverter).

$$
\mathrm{FI}=\mathrm{C}_{\mathrm{IN}} \quad \text { alternately } \quad \mathrm{FI}=\frac{\mathrm{C}_{\mathrm{IN}}}{\mathrm{C}_{\mathrm{REF}}}
$$

Sizing of Multiple-Input Gates

Analysis strategy : Express delays in terms of those of reference inverter

Assume $\mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3$
$\mathbf{W}_{\mathrm{n}}=\mathbf{W}_{\text {MIN }}, W_{\mathrm{p}}=3 \mathbf{W}_{\text {MIN }}$
$L_{n}=L_{p}=L_{\text {MIN }}$
In 0.5 u proc $\mathrm{t}_{\text {REF }}=20 \mathrm{ps}$, $C_{\text {REF }}=4 \mathrm{fF}, R_{\text {PDREF }}=2.5 \mathrm{~K}$

$$
\begin{aligned}
& C_{\text {IN }}=C_{\text {REF }}=4 C_{o x} W_{\text {MIN }} L_{\text {MIN }} \\
& \mathrm{FI}_{\text {REF }}=C_{\text {REF }} \quad \text { alternately } \quad \mathrm{FI}_{\text {REF }}=\frac{C_{\text {IN }}}{C_{\text {REF }}}=1 \\
& \text { R PDREF }=R_{\text {PUREF }}=\frac{L_{\text {MIN }}}{\mu_{n} C_{o x} W_{\text {MIN }}\left(0.8 V_{\text {DD }}\right)} \\
& \mathbf{t}_{\text {HLREF }}=t_{\text {LHREF }}=R_{\text {PDREF }} C_{\text {REF }} \\
& t_{\text {REF }}=t_{\text {HLREF }}+t_{\text {LHREF }}=2 R_{\text {PDREF }} C_{\text {REF }}
\end{aligned}
$$

Reminder: Propagation Delay Calculations

Analytical calculation of the actual propagation delay is unwieldly

- Even for a simple inverter, obtaining accurate propagation delay would require solution of a complicated nonlinear differential equation
- And this equation becomes much more complicated for multiple-input gates

Our goal is to obtain approximate expressions for the propagation delay that are easy to work with, that give good approximations to the actual response, and that have proven useful for predicting propagation delays in large digital circuits

Multiple Input Gates:
2-input NOR

Device Sizing

2-input NAND k-input NOR

k-input NAND

Equal Worst Case Rise/Fall (slowest and equal to that of ref inverter when driving $\mathrm{C}_{\text {REF }}$)

$$
\begin{aligned}
& W_{n}=? \\
& W_{p}=?
\end{aligned}
$$

Fastest response $\left(\mathrm{t}_{\mathrm{HL}}\right.$ or $\left.\mathrm{t}_{\mathrm{LH}}\right)=$?
Worst case (slowest) response ($t_{\text {PROP, }}$, usually of most interest)?
Input capacitance (FI) = ?
Minimum Sized (assume driving a load of $\mathrm{C}_{\text {REF }}$)

$$
\begin{aligned}
& \mathbf{W}_{\mathrm{n}}=\mathbf{W}_{\text {min }} \\
& \mathbf{W}_{\mathrm{p}}=\mathbf{W}_{\text {min }}
\end{aligned}
$$

Fastest response $\left(\mathrm{t}_{\mathrm{HL}}\right.$ or $\left.\mathrm{t}_{\mathrm{LH}}\right)=$?
Slowest response (t_{HL} or t_{LH}) = ?
Worst case response ($\mathrm{t}_{\text {PROP }}$, usually of most interest)?
Input capacitance (FI) = ?

Device Sizing

Equal Worst Case Rise/Fall (slowest and equal to that of ref inverter when driving $\mathrm{C}_{\text {REF }}$)

Multiple Input Gates: 2-input NOR

(n -channel devices sized same, p-channel devices sized the same)
Assume $L_{n}=L_{p}=L$ min and driving a load of $C_{\text {REF }}$

Observe: When pulling up, two p-channel transistors in series

$$
\mathrm{R}_{\mathrm{PU}}=\frac{\mathrm{L}_{\mathrm{P}}}{\mu_{\mathrm{P}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\mathrm{P}}\left(\mathrm{~V}_{\mathrm{DD}}+\mathrm{V}_{T H P}\right)}+\frac{\mathrm{L}_{\mathrm{P}}}{\mu_{\mathrm{P}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\mathrm{P}}\left(\mathrm{~V}_{\mathrm{DD}}+\mathrm{V}_{T H P}\right)}
$$

$$
\mathrm{R}_{\mathrm{PU}}=\frac{2 \mathrm{~L}_{\mathrm{P}}}{\mu_{\mathrm{p}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\mathrm{P}}\left(\mathrm{~V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{THP}}\right)}
$$

Thus if require with $L_{p}=L_{\text {min }}$ that $R_{P U}=R_{\text {PDREF }}$

$$
\frac{2 \mathrm{~L}_{\text {MIN }}}{\mu_{\mathrm{P}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\mathrm{P}}\left(\mathrm{~V}_{\mathrm{DD}}+\mathrm{V}_{\text {THP }}\right)}=\frac{\mathrm{L}_{\text {min }}}{\mu_{\mathrm{n}} \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {min }}\left(\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\text {THN }}\right)}
$$

So obtain:

$$
\mathrm{W}_{\mathrm{P}}=2 \frac{\mu_{\mathrm{n}}}{\mu_{\mathrm{p}}} \mathrm{~W}_{\text {min }}=6 \mathrm{~W}_{\text {min }}
$$

Device Sizing

Equal Worst Case Rise/Fall (slowest and equal to that of ref inverter when driving $\mathrm{C}_{\text {REF }}$)

Multiple Input Gates: 2-input NOR

(n -channel devices sized same, p-channel devices sized the same)
Assume $L_{n}=L_{p}=L$ min and driving a load of $C_{\text {REF }}$

$$
W_{n}=?
$$

DERIVATIONS

$$
\mathrm{W}_{\mathrm{p}}=?
$$

Input capacitance = ?

$$
\mathrm{Fl}=?
$$

$$
\mathrm{t}_{\text {PROP }}=\text { ? (worst case) }
$$

$$
\mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\mathrm{MIN}}
$$

$$
\mathrm{W}_{\mathrm{p}}=6 \mathrm{~W}_{\mathrm{MIN}}
$$

$$
\mathrm{C}_{\text {INA }}=\mathrm{C}_{\text {INB }}=\mathrm{C}_{\text {OX }} W_{\text {MIN }} L_{\text {MIN }}+6 \mathrm{C}_{\text {OX }} \mathrm{W}_{\text {MIN }} L_{\text {MIN }}=7 \mathrm{C}_{\text {OX }} \mathrm{W}_{\text {MIN }} \text { LIIN }=\left(\frac{7}{4}\right) 4 \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIIN }} \text { LIIN }=\left(\frac{7}{4}\right) \mathrm{C}_{\text {REF }}
$$

$$
\mathrm{FI}=\left(\frac{7}{4}\right) \mathrm{C}_{\text {REF }} \quad \text { or } \quad \mathrm{FI}=\frac{7}{4}
$$

$$
t_{\text {PROP }}=t_{\text {REF }} \quad \text { (worst case) }
$$

Device Sizing

Equal Worst Case Rise/Fall
 (slowest and equal to that of ref inverter when driving $\mathrm{C}_{\text {REF }}$)

Multiple Input Gates: 2-input NOR
(n-channel devices sized same, p-channel devices sized the same)
Assume $L_{n}=L_{p}=L$ min and driving a load of $C_{R E F}$

$$
W_{n}=?
$$

$W_{p}=$?
Input capacitance = ?
FI=?
$\mathbf{t}_{\text {PROP }}=$? (worst case)
One degree of freedom was used to satisfy the constraint indicated

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\text {MIN }} \\
& \mathrm{W}_{\mathrm{p}}=6 \mathrm{~W}_{\text {MIN }} \quad \begin{array}{l}
\text { Other degree of freedom was used to } \\
\text { achieve equal rise and fall times }
\end{array} \\
& \mathrm{C}_{\text {INA }}=\mathrm{C}_{\text {INB }}=\mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIN }} L_{\text {MIN }}+6 \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIN }} L_{\text {MIN }}=7 \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIN }} L_{\text {MIN }}=\left(\frac{7}{4}\right) 4 \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIN }} L_{\text {MIN }}=\left(\frac{7}{4}\right) \mathrm{C}_{\text {REF }} \\
& \mathrm{FI}=\left(\frac{7}{4}\right) \mathrm{C}_{\text {REF }} \quad \text { or } \quad \mathrm{FI}=\frac{7}{4} \\
& \mathrm{t}_{\text {PROP }}=\mathrm{t}_{\text {REF }} \\
& \text { (worst case) }
\end{aligned}
$$

Device Sizing

Equal Worst Case Rise/Fall (slowest and equal to that of ref inverter when driving $\mathrm{C}_{\text {REF }}$)

Multiple Input Gates: k-input NOR

$$
\begin{aligned}
& \mathrm{Wn}=? \\
& \mathrm{Wp}=?
\end{aligned}
$$

DERIVATIONS

Input capacitance = ?
$\mathrm{FI}=$?
$t_{\text {PROP }}=$?
$\mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\mathrm{MIN}}$

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{p}}=3 \mathrm{~kW} \mathrm{~W}_{\text {MIN }}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{Fl}=\left(\frac{3 \mathrm{k}+1}{4}\right) \mathrm{C}_{\text {REF }} \quad \text { or } \quad \mathrm{FI}=\frac{3 \mathrm{k}+1}{4} \\
& t_{\text {PROP }}=t_{\text {REF }} \quad \text { (worst case) } \\
& t_{\text {PROP }}=t_{\text {REF }}
\end{aligned}
$$

Device Sizing

Equal Worst Case Rise/Fall (slowest and equal to that of ref inverter when driving $\mathrm{C}_{\text {REF }}$)
Multiple Input Gates: 2-input NAND

$$
W n=?
$$

DERIVATIONS

$\mathrm{Wp}=$?

Input capacitance = ?
FI=?

$t_{\text {PROP }}=$?

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{n}}=2 \mathrm{~W}_{\text {MIN }} \\
& \mathrm{W}_{\mathrm{p}}=3 \mathrm{~W}_{\text {MIN }} \\
& \mathrm{C}_{\text {INA }}=\mathrm{C}_{\text {INB }}=2 \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIN }} L_{\text {MIN }}+3 \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIN }} \text { LIIN }=(5) \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIN }} L_{\text {MIN }}=\left(\frac{5}{4}\right) 4 \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\text {MIN }} L_{\text {MIN }}=\left(\frac{5}{4}\right) \mathrm{C}_{\text {REF }} \\
& \mathrm{FI}=\left(\frac{5}{4}\right) \mathrm{C}_{\text {REF }} \quad \text { or } \quad \text { FI }=\frac{5}{4} \\
& \mathrm{t}_{\text {PROP }}=\mathrm{t}_{\text {REF }} \quad \text { (worst case) }
\end{aligned}
$$

Device Sizing

Equal Worst Case Rise/Fall (slowest and equal to that of ref inverter when driving $\mathrm{C}_{\text {REF }}$) Multiple Input Gates: k-input NAND

DERIVATIONS

$$
W n=?
$$

$W p=?$
Input capacitance = ?
$\mathrm{FI}=$?
$t_{\text {PROP }}=$?

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{n}}=\mathrm{kW} \mathrm{~W}_{\mathrm{MIN}} \\
& \mathrm{~W}_{\mathrm{p}}=3 \mathrm{~W}_{\mathrm{MIN}} \\
& C_{I N X}=k C_{O X} W_{\text {MIN }} L_{\text {MIN }}+3 \text { C }_{\text {OX }} W_{\text {MIN }} L_{\text {MIN }}=(3+k) C_{O X} W_{\text {MIN }} L_{\text {MIN }}=\left(\frac{3+k}{4}\right) 4 C_{\text {OX }} W_{\text {MINL }} L_{\text {MIN }}=\left(\frac{3+k}{4}\right) C_{\text {REF }} \\
& \mathrm{FI}=\left(\frac{3+\mathrm{k}}{4}\right) \mathrm{C}_{\text {REF }} \quad \text { or } \quad \mathrm{FI}=\frac{3+\mathrm{k}}{4} \\
& t_{\text {PROP }}=t_{\text {REF }} \quad \text { (worst case) }
\end{aligned}
$$

Device Sizing

Comparison of NAND and NOR Gates for Equal worst-case rise/fall

$$
\mathrm{W}_{\mathrm{p}}=3 \mathrm{~W}_{\text {MIN }}
$$

$$
\mathrm{C}_{\mathrm{INx}}=\left(\frac{3+\mathrm{k}}{4}\right) \mathrm{C}_{\mathrm{REF}}
$$

$$
\mathrm{FI}=\left(\frac{3+\mathrm{k}}{4}\right) \mathrm{C}_{\mathrm{REF}} \quad \text { or } \quad \mathrm{FI}=\frac{3+\mathrm{k}}{4}
$$

$$
t_{\text {PROP }}=t_{\text {REF }} \quad \text { (worst case) }
$$

Device Sizing

Equal Worse-Case Rise/Fall Device Sizing Strategy
-- (same as $\mathrm{V}_{\text {TRIP }}=\mathrm{V}_{\mathrm{DD}} / 2$ for worst case delay in typical process considered in example)
Assume $\mu_{\mathrm{n}} / \mu_{\mathrm{p}}=3$
$L_{n}=L_{p}=L_{\text {MIN }}$

INV

k-input NOR
$W_{n}=W_{\text {MIN }}, W_{p}=3 k W_{\text {MIN }}$

$$
\mathrm{C}_{\text {IN }}=\left(\frac{3 \mathrm{k}+1}{4}\right) \mathrm{C}_{\text {REF }}
$$

$$
\mathrm{FI}=\left(\frac{3 \mathrm{k}+1}{4}\right)
$$

k-input NAND

$\mathbf{W}_{\mathrm{n}}=k \mathbf{W}_{\text {MIN }}, \mathbf{W}_{\mathrm{p}}=3 \mathbf{W}_{\text {MIN }}$
$C_{\text {IN }}=\left(\frac{3+k}{4}\right) C_{\text {REF }}$
$\mathrm{FI}=\left(\frac{3+\mathrm{k}}{4}\right)$

Multiple Input Gates:
2-input NOR

Device Sizing

2-input NAND k-input NOR

k-input NAND

Equal Worst Case Rise/Fall (and equal to that of ref inverter when driving $\mathrm{C}_{\text {REF }}$) $\mathbf{W n =}$?
$\mathrm{Wp}=$?
Fastest response $\left(\mathrm{t}_{\mathrm{HL}}\right.$ or $\left.\mathrm{t}_{\mathrm{LH}}\right)=$?
Worst case response ($t_{\text {PROP }}$, usually of most interest)?
Input capacitance (FI) = ?
Minimum Sized (assume driving a load of $\mathrm{C}_{\text {REF }}$)
$\mathbf{W n = W m i n}$
Wp=Wmin
Fastest response $\left(\mathrm{t}_{\mathrm{HL}}\right.$ or $\left.\mathrm{t}_{\mathrm{LH}}\right)=$?
Slowest response (t_{HL} or t_{LH}) = ?
Worst case response ($\mathrm{t}_{\text {PROP }}$, usually of most interest)?
Input capacitance $(\mathrm{FI})=$?

Device Sizing

Minimum Sized (assume driving a load of $\mathrm{C}_{\text {REF }}$) $\quad \mathrm{W}_{\mathrm{n}}=\mathrm{W}_{\text {min }} \quad \mathrm{W}_{\mathrm{p}}=\mathrm{W}_{\text {min }}$ Input capacitance (FI) $=$?

$$
\begin{aligned}
\mathrm{C}_{I N} & =\mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\mathrm{n}} \mathrm{~L}_{\mathrm{n}}+\mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\mathrm{p}} \mathrm{~L}_{\mathrm{p}}=\mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\min } \mathrm{L}_{\min }+\mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\min } \mathrm{L}_{\min }=2 \mathrm{C}_{\mathrm{OX}} \mathrm{~W}_{\min } \mathrm{L}_{\min }=\frac{\mathrm{C}_{R E F}}{2} \\
\mathrm{FI} & =\frac{1}{2}
\end{aligned}
$$

Fastest response $\left(\mathrm{t}_{\mathrm{HL}}\right.$ or $\left.\mathrm{t}_{\mathrm{HL}}\right)=$?
Slowest response $\left(\mathrm{t}_{\mathrm{HL}}\right.$ or $\left.\mathrm{t}_{\mathrm{HL}}\right)=$?

Worst case response ($t_{\text {PROP }}$, usually of most interest)?

Device Sizing - minimum size driving $\mathrm{C}_{\text {REF }}$

INV

$$
\begin{gathered}
\text { © } \quad \mathrm{t}_{\mathrm{PROP}}=0.5 t_{\text {REF }}+\frac{3}{2} t_{\text {REF }} \\
\overbrace{\tilde{U}} \\
\stackrel{\rightharpoonup}{\omega} \quad \mathrm{t}_{\mathrm{PROP}}=2 t_{\text {REF }}
\end{gathered}
$$

$$
\mathrm{FI}=\frac{\mathrm{C}_{\mathrm{REF}}}{2}
$$

$$
\mathbf{R}_{\text {PD }}=\mathbf{R}_{\text {PDREF }}
$$

$$
\mathbf{R}_{\mathrm{PU}}=3 \mathbf{R}_{\text {PDREF }}
$$

k-input NOR

$$
\begin{array}{cc}
\mathrm{t}_{\mathrm{PROP}}=0.5 t_{\text {REF }}+\frac{3 k}{2} t_{\text {REF }} & \mathrm{t}_{\mathrm{PROP}}=\frac{3}{2} t_{\text {REF }}+\frac{k}{2} t_{\text {REF }} \\
\mathrm{t}_{\mathrm{PROP}}=\left(\frac{3 k+1}{2}\right) t_{\text {REF }} & \mathrm{t}_{\mathrm{PROP}}=\frac{3+k}{2} t_{\text {REF }}
\end{array}
$$

$$
\begin{aligned}
& \frac{1+3 \mathrm{k}^{2}}{2 \mathrm{k}} t_{\text {REF }} \leq \mathrm{t}_{\text {PROP }} \leq \frac{3 k+1}{2} t_{\text {REF }} \\
& \mathrm{FI}=\frac{\mathrm{C}_{\text {REF }}}{2} \\
& \mathbf{R}
\end{aligned}
$$

$$
\frac{\mathbf{R}_{\text {PDREF }}}{\mathbf{k}} \leq \mathbf{R}_{\text {PD }} \leq \mathbf{R}_{\text {PDREF }}
$$

$$
\mathbf{R}_{\mathrm{PU}}=3 \mathbf{k} \mathbf{R}_{\mathrm{PDREF}}
$$

k-input NAND

$$
\frac{3+k^{2}}{2 k} t_{R E F} \leq \mathrm{t}_{\mathrm{PROP}} \leq \frac{3+k}{2} t_{\text {REF }}
$$

$$
\mathrm{FI}=\frac{\mathrm{C}_{\mathrm{REF}}}{2}
$$

$$
\frac{3 R_{\text {PDREF }}}{k} \leq \mathbf{R}_{\text {PU }} \leq 3 \mathbf{R}_{\text {PDREF }}
$$

$$
\mathbf{R}_{\mathrm{PD}}=\mathbf{k} \mathbf{R}_{\text {PDREF }}
$$

Device Sizing Summary

INV

k-input NOR

k-input NAND
$\mathrm{C}_{\text {IN }}$ for $\mathrm{N}_{\text {AND }}$ gates is considerably smaller than for NOR gates for equal worst-case rise and fall times
C_{IN} for minimuim-sized structures is independent of number of inputs and much smaller than $\mathrm{C}_{\text {IN }}$ for the equal rise/fall time case
$R_{\text {PU }}$ gets very large for minimum-sized NOR gate

Stay Safe and Stay Healthy !

End of Lecture 40

